BAIN MUSC 726T
Tuning Theory

Mathematical Definitions

Return to: MUSC 726T
 

Number systems N, Z, Q
            & RNumber Sets

  1. Natural numbers (Natural numbers) {WP}
  2. Integers (Integers) {WP}
  3. Rational numbers (Rational
          numbers) {WP}
  4. Real numbers (Real numbers) {WP}
  5. Prime numbers {WP; MW; OEIS}


Number Sequences

  1. Natural numbers, or positive integers, an arithmetic progression {WP; OEIS}
    1, 2, 3, 4, 5, ...
  2. Harmonic progression
    1, 1/2, 1/3, 1/4, 1/5, ...
  3. Powers of 2, a geometric progression {WP; OEIS}
    1, 2, 4, 8, 16, 32, 64, ...
  4. Triangular numbers {WP; MW; OEIS}
    0, 1, 3, 6, 10, 15, 21, ...
  5. Fibonacci numbers {WP; MW; OEIS}
    0, 1, 1, 2, 3, 5, 8, 13, 21 ...
  6. Primes {WP; OEIS}
    2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, ...


Arithmetic

  1. Arithmetic {MW; WP}
  2. Operations
  3. Order of Operations: PEMDAS {WP}
  4. Fundamental theorem of arithmetic {MW; WP}


Fractions
{Calculator: Wolfram Alpha}

  1. Fraction, represents a part of a single whole  {WP; MW}
    a/b
  2. Ratio, compares the size of two or more quantities {WP; MW}
    a:b, or a/b
  3. Reciprocal {WP}
    The reciprocal of x is 1/x
  4. Superparticular ratio {WP}
    (n+1)/n, where n is a positive integer; e.g., 3/2, 4/3, 5/4, 9/8, 10/9, etc.
  5. Reduced fraction, a fraction's simplest form {WP}
    e.g., 4/2 = 2/1; 6/4 = 3/2, 12/6 = 2/1, 80/64 = 5/4, etc.
  6. Ratio under octave reduction {XW}
    e.g., 3/1 = 3/2, 4/1 = 2/1, 5/1 = 5/4, 6/1 = 6/4 = 3/2, 7/1 = 7/4, etc.
  7. Multiplying a fraction by another fraction {WP}
    e.g., 3/2 × 4/3 = 2/1; 9/8 × 9/8 = 81/64; 9/8 × 5/4 = 45/32, etc.
  8. Dividing a fraction by another fraction
    e.g., 2/1 ÷ 4/3 = 2/1 × 3/4 = 6/4 = 3/2
  9. Decimal expansion {MW}
    e.g., 3/2 ≈ 1.5; 4/3 1.333, 5/3 1.667; etc.
  10. Approximation {WP; MW}
  11. Rounding {WP; MW}
  12. Divisor, or factor {WP}
    e.g., 2 is a divisor of 6, because 2 x 3 = 6
  13. Multiple {WP}
    e.g., 6 is a multiple of 2, because 6 ÷ 3 = 2
  14. Least common multiple (LCM) {WP; Calculator: Wolfram Alpha}
    e.g., LCM (4, 6) = 12; LCM (3, 5) = 15; LCM (4, 5, 6) = 60, etc.
  15. Lowest common denominator (LCD) {WP; Calculator: Calculator Soup}
    e.g., LCD (1/2, 2/3) = 6; LCD (5/12, 11/18) = 36; LCD (1/2, 1/3, 1/4) = 12; etc.


Exponentiation

  1. Exponentiation (^) {WP}
    e.g., 2^3 = 2 × 2 × 2 = 8;
    e.g., 12-tet: 2^(1/12)
    1.059; 2^(3/12) 1.189; 2^(7/12) 1.498, etc.
  2. nth root {WP}

    e.g., 12-tet: 2^(1/12) 1.059; 17-tet: 2^(1/17) 1.042; 31-tet: 2^(1/31) 1.023; etc.
  3. Calculator: Exponents Problem Solver {Wolfram Alpha}


Logarithm

  1. Logarithm (log) {WP}
    e.g., log10(1000) = 3, or 10^3 = 1000; log2(8) = 3; i.e., 2^3 = 8; log10(3/2) = log10(1.5) 0.176
  2. Cent (¢) {WP}
    c = 1200 log2 (f1/f2)
    e.g., 2/1 = 1200¢; 1/1 = 0¢; 2^(1/12) = 100¢; 3/2 702¢; 4/3 498¢ (rounded to the nearest cent)
    e.g., 81/80 21.5¢ (rounded to the nearest 1/10 cent)
  3. Calculators:

Platonic solidsGeometry
  1. Cartesian coordinate system {WP; MW}
  2. Circle {WP; MW}
  3. Dimension {WP}
  4. Euclid's Elements (c. 300 BCE) {WP; Texas} (Fitzpatrick 2008)
  5. Euclidean geometry {WP}
  6. Figurate number {MW}
  7. Plane {WP}
  8. Point {WP}
  9. Line {WP; MW}
  10. Platonic solids {WP; MW}
  11. Polygon {WP; MW}
  12. Pythagorean means {MW; WP}
  13. Pythagorean theorem {WP; MW}
  14. Spiral {WP}
  15. Tetractys {WP; MW}



Hasse diagram (60)Advanced

  1. Binary tree {WP; MW}
  2. Continued fractions {WP; MW}
  3. Coprime, or relatively prime, integers {WP; MW}
  4. Farey sequence {WP; MW; OEIS}
  5. Fibonacci sequence {WP; MW; OEIS}
    1, 1, 2, 3, 5, 8, 13, ...
  6. Golden ratio {WP; MW}
  7. Graph theory {WP; MW}
  8. Hasse diagram {WP; MW}
  9. Linear algebra {WP; MW}
  10. Mediant {WP; MW}
  11. Multiplication table {WP; MW}
  12. Pascal's triangle {WP; MW}
  13. Prime counting function {WP; MW}
  14. Prime factorization {WP; MW}
  15. Projective plane {WP; MW}
  16. Rhombus {WP}
  17. Rieman Zeta function {XW; MW}
  18. Set theory {WP; MW}
  19. Stern-Brocot tree {WP; WP}
  20. Strähle construction {WP; HFF}
  21. Tessellation, or tiling {WP; MW}
  22. Transfinite number {WP; MW}
  23. Topology {WP; MW}
  24. Torus {WP; MW}

* * *

Image credits: Click on an image to see the Wikipedia credit



Links

Sloane, Online Encyclopedia of Integer Sequences {OEIS} –  https://oeis.org

Wikipedia {WP} – https://www.wikipedia.org

Wolfram Alpha {WA} – https://www.wolframalpha.com

Wolfram MathWorld {MW} – https://mathworld.wolfram.com

Xenharmonic Wiki {WX} – https://en.xen.wiki

References

Benson, David. 2007. Music: A Mathematical Offering. Cambridge: Cambridge University Press. {GB; Website}

Fauvel, John, Raymond Flood, and Robin Wilson, eds. 2003. Music and Mathematics: From Pythagoras to Fractals. New York: Oxford University Press. {GB}

Gann, Kyle. 2019. The Arithmetic of Listening: Tuning Theory and History for the Impractical Musician. Urbana: University of Illinois Press. {GB; Full text: TCL; Audio Examples}

Hardy, G. H. and E. M. Wright. 2008/1936. An Introduction to the Theory of Numbers, 6th ed. London: Oxford University Press. {GB}

Loy, Gareth. 2006. Musimathics: The Mathematical Foundations of Music, Vol. 1-2. Cambridge, Mass: MIT Press. {Full text: Vol. 1 Musical Elements:: TCL; Vol. 2 Musical Signals: TCL}

Marecek, Lynn, MaryAnne Anthony-Smith, and Andrea Honeycutt Mathis. 2020. Prealgebra, 2nd e. Houston, TX: OpenStax. {OpenStax}

Sloane, N. J. A. 1964. The Online Encyclopedia of Integer Sequences (OEIS). Available online at: <https://oeis.org>.

Weisstein, Eric, ed. 2021. Wolfram MathWorld – A Wolfram Web Resource. Available online at: <https://mathworld.wolfram.com>. 



Updated: December 1, 2025

Reginald Bain | University of South Carolina | School of Music
https://reginaldbain.com/vc/musc726t/