Straus Chapter 4

Motive, Voice Leading, and Harmony

Joseph N. Straus, Introduction to Post-Tonal Theory, 4th ed. (New York: Norton, 2016), pp. 159-174 & 188-199.

TERMS & CONCEPTS

Composing Out (§ 4.1, p. 159)

Projecting a motive over a larger time span

Motive

Deeper levels of structure

Self-similarity

Interval Cycles (§ 4.2, p. 162)

Systematic transposition of a pc by a single interval (opci) Interval cycles: C1, C2, C3, C4, C5 & C6 (p. 164)

Pitch-class distinct cycles:

C1 <0123456789TE> C2₀ <02468T> & C2₁ <13579E> C3₀ <0369>, C3₁ <147T> & C3₂ <258E> C4₀ <048>, C4₁ <159>, C4₂ <26T> & C4₃ <37E> C5 <05T3816E4927>

 $C6_0 < 06>$, $C6_1 < 17>$, $C6_2 < 28>$, $C6_3 < 39>$, $C6_4 < 4T>$ & $C6_5 < 5E>$

Cyclic linear motion (§ 4.2.1, p. 165) Cyclic harmonies (§ 4.2.2, p. 166)

Maximal Evenness (§ 4.2.3, p. 169)

Maximally even set classes

A set class where the pitch classes are spaced as widely spaced as possible

Nearly-even set classes

A set class that is the result of adjusting a maximally even set class by one semitone

Combination Cycles (§ 4.2.4, p. 171)

Systematic transposition of a pc by a pair of alternating intervals. A systematic way to move through a set class Straus notation: $\langle x, y \rangle$, where x & y are opci

Voice Leading (§ 4.3, p. 174)

Transformational network (§ 2.3.7, p. 51)

Transformational voice leading

Pitch-class mappings induced by T_n & I_n

Fuzzy transposition and inversion (with offset)

Set-class space (§ 4.4, p. 179)

- Trichords (p. 180)
- Tetrachords (p. 181)

Contextual Inversion (§ 4.5, p. 174)

Inverting around a specific structural feature of a pc set Common-tone preserving transformations Chain and space (§ 4.5.1, p. 179)

Triadic Post-Tonality (§ 4.6, p. 188)

Voice-leading parsimony

Maximally smooth voice leading

Neo-Riemannian Theory

Neo-Riemannian Operations (NROs)¹

- P, L & R
- P', L' & R'

Progressions, chains & cycles (LP, PLR, etc.)

Hexatonic systems and hexatonic poles (H)

Other Triadic Pathways (§ 4.6.2, p. 196)

MAXIMALLY-EVEN SET CLASSES

c	Collection name	Set class	c	Collection name	Set class
2	Tritone	2-6 (06)	10		10-6 (012346789T)
3	Augmented triad	3-12 (048)	9	Enneatonic	9-12 (01245689T)
4	Dim. seventh chord	4-28 (0369)	8	Octatonic	8-28 (0134679T)
5	Major pentatonic	5-35 (02479)	7	Diatonic	7-35 (013568T)
6	Whole-tone	6-35 (02468T)	6	Whole-tone	6-35 (02468T)

References

Cohn, Richard. 2012. *Audacious Euphony: Chromatic Harmony and the Triad's Second Nature*. New York: Oxford University Press.

Hook, Julian. 2022. Exploring Musical Spaces: A Synthesis of Mathematical Approaches. New York: Oxford University Press.

Hughes, Bryn. 2020. "Neo-Riemannian Triadic Progressions," in Open Music Theory.

Available online at: https://viva.pressbooks.pub/openmusictheory/chapter/neo-riemannian-triadic-progressions/>.

¹ Another name for P' is SLIDE.