Straus Chapter 3

Some Additional Properties and Relationships

Joseph N. Straus, Introduction to Post-Tonal Theory, 4th ed. (New York: Norton, 2016), pp. 95-132.

TERMS & CONCEPTS

COMMON-TONE THEOREMS

Common tones under T_n (§ 3.1, p. 96)

The number of common tones under T_n may be determined from the ic vector. For example, the pc set $[C, C\sharp, F\sharp, G]$, whose ic vector is 200022, produces the following number (#) of common tones at (@) each level of T_n :

<u>@</u>	T_1	T_2	T_3	T ₄	T_5	T ₆		
#	2	0	0	0	2	2 * 2		
(a),	T ₁₁	T ₁₀	T ₉	T ₈	T ₇			

Because the tritone maps onto itself under T₆, you have to multiply the ic vector's ic6 entry by 2.

Common tones under I_n (§ 3.3, p. 103)

Index matrix, or addition table
Index scoreboard
Index vector

SYMMETRY AND SET CLASS (SC)

Transpositional symmetry (§ 3.2, p. 100)

Self-mapping operation

Degree of transpositional symmetry

Transpositionally symmetrical SCs (p. 101)

Inversional symmetry (§ 3.4, p. 107)

Degree of inversional symmetry Inversionally symmetrical SCs:

- at one level of In
- at more than one level of I_n (p. 111)

Intervallic palindrome, or mirror image

See also: The 12 inversional axes (p. 240)

• Mirror or axis name for each I_n is: $\frac{n}{2}$ to $\frac{n}{2} + 6$

Pitch space symmetry (§ 3.4.2, p. 108)

Center of symmetry and pitch centricity

Some special set classes

Augmented triad: 3-12 (048); Diminished seventh chord: 4-28 (0369); All interval tetrachords: 4-Z15 (0146) & 4-Z29 (0137); All trichord hexachord: 6-Z17 (012478); Petrushka chord: 6-30 (013679): Diatonic hexachord: 6-32 (024579), etc. See also the referential collections in Ch 5 including: 5-35, 6-20, 6-35, 7-35 & 8-28.

DOS & DF (§ 3.5, p. 112)

Degree of symmetry (DOS)

Straus (x, y) notation, where:

- x is the # of T_n self-mapping operations
- y is the # of I_n self-mapping operations

Distinct forms (DF): DF = 24/(x + y)

PROPERTIES & RELATIONSHIPS

Set type under:

- Cardinality (c)
- T_n , T_n/I_n , T_nM , T_nMI , etc.

Similarity relations

Z relation (§ 3.6, p. 112)

The all-interval tetrachords:

4-Z15 (0146) & 4-Z29 (0137)

Z-correspondents

Complement relation (§ 3.7, p. 115)

Aggregate

Any collection containing all 12 pitch classes

Literal complement

Abstract complement

Complement Theorem

- Proportional distribution of ic (§ 3.7.1)
- Same degree of symmetry (§ 3.7.3)

Hexachord Theorem

 Every hexachordal set class is self-complementary, or is Z-related to its complement

IC Vector properties

Unique multiplicity of ic (Ex. 1-22, p. 16) Maximum ic (e.g., Ex. 3-26, p. 118 – Max. ic 4) Minimum ic

Inclusion relation (§ 3.8, p. 121)

Subsets & supersets

Power set, has 2^c members

Literal subset/superset relations

Abstract subset/superset relations

Inclusion lattice (§ 3.8.2, p. 122)

Subset classes

Transpositional combination (§ 3.9, p. 124)

TC property

Contour Relations (§ 3.10, p. 126)

CSEG and CSEG-class

EXAMPLE. Stockhausen, Klavierstück IX

PC set:

X = (1, 6, 7, 0)

X = (1, 6, 7, 0)

Normal form: [0, 1, 6, 7]

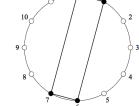
Set class¹

Set class: 4-9 (0167)

IC vector: 200022

DOS: 2, 2

CIA: 1-5-1-5



Polygon notation

Complement:

Literal: X' = [2, 3, 4, 5, 8, 9, 10, 11] **Abstract:** 8-9 (01236789) 644464

Common tones under T_n and the ic vector:²

(a)	T ₀	T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	T ₈	T ₉	T ₁₀	T ₁₁
# of common tones	4	2	0	0	0	2	4	2	0	0	0	2

Common tones under I_n and the index matrix (or addition table) and scoreboard:³

	0	1	6	7
0	0	1	6	7
1	1	2	7	8
6	6	7	0	1
7	7	8	1	2

a	I ₀	I ₁	I ₂	I ₃	I ₄	I ₅	I ₆	I ₇	I ₈	I ₉	I ₁₀	I ₁₁
# of common tones	2	4	2	0	0	0	2	4	2	0	0	0

Index vector:4 242000242000

[0, 1, 6, 7] maps onto itself at T₀, T₆, I₁ & I₇, thus its degree of symmetry (DOS) is: (2, 2)

Literal and Abstract Subsets (2°):

16 literal subsets: (0, 1, 6, 7), (0, 1, 6), (0, 1, 7), (0, 6, 7), (1, 6, 7), (0, 1), (0, 6), (0, 7), (1, 6), (1, 7), (6, 7), (0), (1), (6), (7), ()

Subset classes: 4-note subset: (0167); 3-note subsets: (016); 2-note subsets: (01), (05) & (06)

References

Straus, Joseph N. 2016. *Introduction to Post-Tonal Theory*, 4th ed. New York: Norton. Morris, Robert. 1987. *Composition with Pitch Classes*. New Haven: Yale University Press.

Software

Bain, Reginald. *PC Polygon Assistant*. Available online at: https://reginaldbain.com/software.html Buchler, Michael. *Setmaker*. Available online at: https://myweb.fsu.edu/mbuchler/setmaker.html.

¹ DOS is degree of symmetry (see p. 119). CIA is cyclic interval array of the prime form (see Morris 1987, CINT₁).

 $^{^{2}}$ If an entry equals the *cardinality* (c) of the set, the set *maps onto itself* at (@) that level of T_{n} . Every set maps onto itself at T_{0} .

³ The *index matrix* shows the inversional *sums* in a *c*-by-*c* matrix. The scoreboard shows the total number (#) of occurrences of each sum in the matrix, which corresponds to the number of common tones @ each level of I_n .

 $^{^4}$ We define the *index vector* to be a listing (without commas) of the number of common tones produced under $I_0, I_1, I_2, ..., I_{11}$.